Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clin Nutr ESPEN ; 46: 361-366, 2021 12.
Article in English | MEDLINE | ID: covidwho-1446530

ABSTRACT

BACKGROUND & AIMS: Resting Energy Expenditure (REE) quantitatively describes the calories used to support body function (e.g. breathing, blood circulation, etc.) at resting condition. Assessment of the REE is essential for successful weight management and the understanding of metabolic health. REE is typically determined via indirect calorimetry. Current biomedical indirect calorimetry technologies, utilizing assessment of oxygen consumption (VO2) and carbon dioxide production (VCO2) rates (which are typically in the form factor of a metabolic cart) are bulky and require on-site calibration and/or trained professionals to operate. We introduce a novel wearable medical device with FDA clearance to determine REE accurately, portable, and user-friendly format, which can be used both by health professionals in a clinical environment and by the patient at home. Previously, we have reported the validation of Breezing Med (also named as Breezing Pro™) through Douglas Bag Method, a gold standard for gas exchange measurement, and excellent agreement has been found between the two methods for the determination of REE, VO2, and VCO2 rates (Mora et al., 2020). Now we present the validation of Breezing Med against Medical Graphics (MGC) CPX Ultima™, a FDA 510 k cleared metabolic cart, which principle is based on breath-by-breath analysis. In addition, we present Breezing Med as a tool for daily measurement of metabolic rate by the lay person at home. METHODS: A) The validation study was executed via parallel measurement of 20 healthy participants under resting conditions using both the Breezing Med and the MGC Ultima CPX™ (10 min test). B) Breezing Med measurements were carried out by six subjects at home during stay-at-home order due to COVID-19 for 30 days. RESULTS: A) The resulting measurements from both devices was compared with correlation slope's and R-squared coefficients close to 1. B) Results were recorded and analyzed for variability. The pilot study demonstrated the advantage of Breezing Med device to be easy-to-use at home by lay people, which make the valuable device for telemedicine applications related to weight management from home. CONCLUSIONS: This result shows that the MGC Ultima CPX™ and Breezing Med are substantially equivalent for REE measurement; and an advantage of this device for metabolic assessment under the current COVID-19 pandemic situation, for people with impaired physical mobility, and for those who lives in rural areas or face impediments that limit physical access to care.


Subject(s)
COVID-19 , Telemedicine , Carbon Dioxide , Humans , Pandemics , Pilot Projects , SARS-CoV-2
2.
Respir Med ; 181: 106381, 2021 05.
Article in English | MEDLINE | ID: covidwho-1157713

ABSTRACT

The COVID-19 pandemic has caused huge impact on public health and significantly changed our lifestyle. This is due to the fast airborne oro-nasal transmission of SARS-CoV-2 from the infected individuals. The generation of liquid aerosolized particles occurs when the COVID-19 patients speak, sing, cough, sneeze, or simply breathe. We have developed a novel aerosol barrier mask (ABM) to mitigate the spread of SARS-CoV-2 and other infectious pathogens. This Aerosol Barrier Mask is designed for preventing SARS-CoV-2 transmission while transporting patients within hospital facilities. This mask can constrain aerosol and droplet particles and trap them in a biofilter, while the patient is normally breathing and administrated with medical oxygen. The system can be characterized as an oxygen delivery and mitigation mask which has no unfiltered exhaled air dispersion. The mask helps to prevent the spread of SARS-CoV-2, and potentially other infectious respiratory pathogens and protects everyone in general, especially healthcare professionals.


Subject(s)
COVID-19/prevention & control , COVID-19/virology , Communicable Disease Control/methods , Equipment Design/methods , Masks , SARS-CoV-2/pathogenicity , Aerosols , COVID-19/transmission , Health Personnel , Humans
SELECTION OF CITATIONS
SEARCH DETAIL